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LAGRANGIAN-HISIORY CLO)URL APPROXIMATION FOR TURULLNCE

Robert H. Kraichnan

Peterborough, New Hampshire

I Ju_.v 1964

The direct-interaction approximation for turbulence is extended to

predict the covariance and averave Green's function of a generalizea velocity

u(x,tlr). The latter is uefined as the velocity measured at time r in the

fluid element which passes through the noint x at tire t. The resulting

formulas for triple moments involve interrals over the Eulerian time-history

of the fluid. The approximation is then altered so that the integrals are

instead over Lagrangian histories, neasured aLonr the pr.rt;cl Daths. The

alteration is made necessary and is uniquely determined by reouiring sivul-

taneously the consistency properties that energy be conserved; that there

exist formal inviscid equipartition solutions; and that the dynamics exhibit

invariance under a class of random Galilean transformations. In the altered

approximation, the relaxation times associated with enerry-transfer are

Lagrangian memory times aetermined by the viscous and oressure forces. As

a result, the approximation yields the Kolmoeorov inertial- and dissipation-

range laws. The c.-wresponding approximation for convection of a passive

scalai- field yields some exact results of Taylcr :nd yields Richardson's law

for the relative diffusion of two pmrticles.
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I. INTRODUCTION

1
It was stressed in an earlier paper that Eu.erian moments do not Provide

an appropriate description of the convection of small spatial scales of turb-

ulence by large spatial scales. Knowledge of the Eulerian velocity ccvarianc"

alone does not permit discrimination between two importantly different

situat-cls. In one, the time-dependence of the small-scale features, measured

at fixed points in space, is due to internal distortion. In the other, the

time-depen-ence is due to the small scales being stept along, almost undis-

torted, by the large-scale notion. In the first situation, the measured

characteristic times of variation are relevant to the transfer of energy

among the small scales, while in the second this is not so. This suggests

that closure approximations which involve only low-order Eulerian moments do

not retain sufficient inforuation to represent pronerly the enerogy transfer

among small scales which are convected by large scales. In Ref. I it was

shown in detail that this difficulty makes it impossible for the direct-

interaction approximation2 ' 3 and a related, higher Eulerian avproximation

to predict correct inertial range dynamics.

A generalized velocity u(!x,tjr) may be defined as the velocity measured

at time r within the fluid element which passes through the Point x at time t.

The function u(x,tlt) coincides with the Eulerian field u(x,t), while u(xttr)

considered as a function of r at fixed x and t Als equivalent to the usually

defir.ed Lagrangian velocity. The two situations Psed in the preceding para-

graph can give similar t dependence of u(x,t) at fixed x. However, internal

distortion of the small scales implies variation of u(xtlr) with both t ama

r, while undistorted convection of these scales implies that the convection

induces a change of the t dependence but no change in the r dependence at

m Ij.. .
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fixed x. This auggests that knowledge of the covariance of the full. function

u(X,tjr) may 1*rmit sufficient discrimination between the two cases.

In the present paper, an alteration of the direct-interaction avpmri".mation

is formnulated whi&ci givez. closed statistical equations involving the covariance

of u(x,tjr.1 arýd the average response of u(x,t~r) to infinitesimal. perturbations.

Construction of -!he final atuproximat ion invol~ves two stages. First, the direct-

i.nteraction approximation for U(X,'tlIr) is coastructed by a straightforward

extension of previously used techniques. This yields expressions for the

triple moments in terms of the covariance function and the average response

function. At this stages, the equation for evolution of the Eulerian ccvariar'ce

is exactly the sam as in the purely EuIerian direct-interaction scheme.

The equations so formed preserve certain fundamental propert.ies of the

exact dynaics: Conservation of energy by the nonlinear interaction, maintain-

ae of the incompressibility of the Eulerian fie2d, invariance of total

stress-enrzy under the transformation frow Lulerian to Lagrangian coc-xdinates,

ad the dzistence of formal inviscid eouipartition coquilibriua states.* The

inability of the diriect-interact ion equations correctly to represent convection

effects is displayed in sharp form by failure to preserve a further' fundaweital

&-PVWerty Of too exact dynamics: invariance uinder random Gali lean trans format ion.

S~poeothat each flowe in the statistical ensemble is subjected to a transla-

tional velocity which is constant in space and time but which has a Gaussian

enmwW.l* distribution. Clearly the internal dynamics of the turbultnce is

unaffected, and this is expressed analytically by certain transformation laws

for the statistical functions tinder the random translation, These laws are

badly violated by the direct-interaction equations.
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The second stage in the procedure is to alter the direct-interaction

expressions for the triple moments in such a way -s to keen the conservation,

incompressibility, invariance, and equilibrium properties already incorporated

and to realize, simultaneously, A restrictea fcrm of invariance to random

Galilean transformation. The unaltered approximation for the triple momLents

invoilves space-time integrals which exo-ess memory and relaxation effects in

the turbulent motion. The integrals have the form of Eulerian time-histories

(histories at fixed points in space which then are integrated over soace). In

the zltered approximation, the space-time integra> ; are changed so that they

instead are over Lagrangian histories (fluid-element space-time trajectories).

The effective relaxation or memory times are now measured in coordinates

movini with the flow instead of in fixed coordinates, and the evolutior of

the Lulerian velocity covariance is now inextricably coupled to that of the

full Lagrangian covariance.

The prescription for the alteration is heuristic. However, it involves

no arbitrary ci..•x.stants or functions, and seems uniquely determined by the

required invariance, conservation, and equilibrium properties. One important

property of the original approximation is not shown tc survive the alteration.

The direct-interaction equations are exact statistical equations for a certain

dynamical model. This guarantees that the results for the covariances are

realizable as averages over some ensemble of velocity fields and that, conse-

quently, gross unphysical predictions such as negative spectra are precluded.

The guarantee does not presently exist for the altered approximation. The

solutions so far found give no hint of unphysical behavior and, in every case,

represent improvements over the predictions of the unaltered equations.
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The new equations are called the LHDI (Lagrangian-History Direct-

Interaction) approximation. T.e'y are constructed first for the convection of

a passive scalar field by a presrcibed turbulent flow, and then for the

dynamics of the turbulent velocity itself.

The LHDI equations appear to yield inertial and dissipation ranges at

high Reynolds numbers which obey Kolmogorov's laws. This is because the

effective relaxation times in the energy-transfer function are Lagrangian

memory times. The approximation may in fact be regarded as a mathematically

precise (but dynamically approximate) embodiment of Kolmogorov's original

idea that the dynamics of straining and energy-transfer should be examined in

c•ordinates which move locally with the fluid. In the case of the scalar

fiel4, the LHDI equations yield soee exact results of Taylor for the dispersion

of particles by huogeneous, stationary turbulence. When the velocity field

has a Kolmogorov inertial range, the scalar equations yield Richardson's law

for the relative diffusion of tdo particles.

2. GNRALIZED VELOCITY FIELD

Let L(x,t) be the velocity at time t at the point x in a fixed Cartesian

cowrdinate system (Eulerian velocity). DefLne the field u(x,tjr) by

u(x,rlr) = u(x,r), (2.1)

()/?t + ,5x,t).]u(xtlr) 0. (2.2)

Eq. (2.2) bolds for all t and r (t 2 r and t < r). No spatial boundary -on-

ditiomtsi an u(agtr) ame neded, or may be imposed, for t # r. Eqs. (2.1) and

(2.2) imply that
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u(xtjr) = u(x-&Cx,tlr),r), (2.3)

where &(xt~r) is defined as the dispi-cement, during the interval r to t, of

the particle which arrives at (x,t). Thus, u(x,tlr) is the velocity at time

r of the particle which arrives at x at time t. In what follows, u(x,tjr)

will be called the generalized velozity. The time argument preceding the

vertical bar will be called the labeling time and that following the bar will

be called the measuring time. If (x,t) is taken as soe particular point (a,t0

and t 0 is an initial time, then

u(a.,t 0 ir) = w(a,r), (2.4)

where w(a,t) is the Lagrangian velocity as usually defined. 4  Considered as a

function of t at fixed r, u(x,tlr) zives the velocities measured at time r of

the fluid elements which pass through a given point x at various times t.

Now let u(x,t) obey the incopressible Navier-Stokes equation

[a/zft - V 2 + u(x,t)'2]u(x,t) = .7p, (2.5)

V.t(x,t) = 0, (2.6)

wherev is kinematic viscosity and p is kinematic pressure. Then (2.1), (2.2),

(2.5), and (2.6) form a complete set which determine u(x,t) cnd u(x,tlr) when

the spatial boundary conditions and initial conditions on u(x,t) are specified.

Fig. 1 illustrates the Dath which u(x,tlr) follows in the (t,r) plane as it

evolves from a specified initial field u(x,t It ). The evolution along the

diagonal from (t 0 ,tO) to (r,r) obeys (2.5) and (2.6), and the evolution trom

(r,r) to (t,r) obeys (2.2).

The invariance Droperties

_ui(x~t~r)d x =0 o L--u,(x,tlr)u.(x.tlr)d3 x = 0, etc. (2.7);TF A at



-6-

fUA•.M readiLy Ar,- (2.2; mnd (2.6'), ..rvvided that the normai co~nonent of

the Lulcrian veiocity vanishes on the boundaries. Eq. (2.7) reflects the

fact that u(x,tlr) is a relabeling of the values of the Lulerian field u(x,r)

according to a coordinate transformatioc; defined by the displacement F(xtlr).

In the cmse of an incompressible Eulerian field, the Jacobian of the trans-

formation equals one. In general,

V.u(x,,tJr) 0 0 (" $ r). (2.8)

It ia easily seen from (2.2) that (2.6) does not imply a divergenceless

generalized velocity.

Consider next the passive scalar field *(x,t) which satisfies

(3/3t - CV2)*(x,t) = - U(x,tlt)-Vw(xt), (2.9)

where Kis the kinematic diffusivity and (2.6) is assumed. A generalized field

*(x,tJr) may be defined by

v(xrlr) = O(x,r), (2.10)

W*(x,tir)/at = - u(x,tIt)s-V(x,ttr). (2.11)

It satisfies invariance relations similar to (2.7). If c = O, it is clear

fr (2.9)-(2.11) that *(xtlr) is independent of r, which expresses the

constancy of the scalar concentration along the particle trajectories.

3. RESPONSE TO PERT1URBATIONS

'on;truction of the direct-interaction approximation requires the intro-

"duction of the Green's functions, or respse functions, which deacribe the

neode tion of a13itrory idfinitesieaf l fcionsin t ions oi the systeh . Care is

mmd in order to define these funtions in a consistent fashion for the

I
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generalized fields. Consider first thle scalar field. The Eulerian Green's

function may be defined by
A
G(x,t;x',t') = 6i(xtt)/6f(x',t'),

A (3.1)
G(x,t;x',t') = 0 (t < t'),

where f(x,t) is an arbitrary source term added to the rignt-hand-side of

(2.9) and 6/6 denotes functional differentiation. It follows that

2)A A
(a/t - KV )G(x t'x',t') = -uCx'tt).v G(Xt;x',t') (t > t'), (3.2)

x _x
A 3 )
G(x t''x',t1) = 631x-x') (3.3)

where 6 3 (x-x') is the three-dimensional Dirac function.

The Green's function for the generalized field may be defined by

G(x,t~r;x',t'Ir') :6v(x~tjr)/6f(x',t'ir')
A (3.4)

G(x,tlr;x',t'Ir') 0 (r < r'),

where f(x,tlr) is an arbitrary source term added to the right-hand side of

(2.11). Eq. (3.4) is to be interpreted in the following wa-: The perturbatior

in * propagates from (t',r') to (r',r') according to the equations

AI

aG(x,t x,';x',t'Ir')/at = - u(x,)tr';x',t'Ir'), (3.5)
A 3
G(x,t'tr'-;x'.t'r') = (X-xt). (3.6)

Then [note (2.10)] it propagates frOM (r',r') to (r,r) according to

2. "/at - Kv )G(x,tft;ý',t' ir') = -u(x,tjt)-VxXX,t (tx',t'Ir'). (3.7)

Finally, it propagate-. from (r,r) to (t,r) according to

1G(x,tjr;x',t'Ir')/it = -u(x,tit)-. G(x,tIr;x',t'Ir'). (3.8)

Eq. (3.1) may be consiaered a special case of (3.4):

G(x,t;!,t') = -,(xtlt, V it' ). (3.9)
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Also,
AG(x~tjt;t9,t'Ir1) z 6*(x,t)/6f(x1,t'}r')

G(x,tr;x•',t' it') = 60(A,tlr)/6f(x',t'). (3.10)

Conasitency requires that f(xtlr) be taken as a source term in (2.11) when

t 0 r and in (2.9) when t = r.

The generalized Green's function has the following physical significance.

Suppose that a perturbation is externally imposed at time r' in the scalar

concentration at the fluid element which passes through point x' at time t'.

A
Then G(x,t r;x' ,t Ir') gives the resulting perturbation, at time-of-measurement

r, in the scalar conentration at the fluid element which passes through point

x at time t. Fig. 2 illustrates the way in which the Derturbatioc propagates

in the (tr) plane. Note that there are no restrictions on the labeling times

t and t' but that propagation is alays in the direction of increasina time

cf measurement (r ! r').

The velocity-field Green's function tensor may be defined by

/G ij (Xtlr;e_ .t'jr2) -6u il ( tlr)/6flx .t ( I 9t 'i ). 3.1
G ij(itir;x'.t1lr1) 0 (r <r').

Here f(x,,tIr) is a force term added to the right-hand side of the equation

of motion for u(x,tlr), if t 0 r, and to the right-hand side of the equation

of motion for u(x,t) z u(x,tIt) if t = r. The path of propagation of the

perturbation is the same as for the scalar case, In contrast to the scalar

case, the equation of notion for the velocity field is nonlinear. Therefore,

f(xtlr) must be taken as an infinitesimal if the result for AG is to be

indeendent of f.

Special consideration mat be given to incompressit ility. In an in-

copressible fluid not all initial perturbations of the velocity field ame
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possible. If only the Eulerian field is considered, the restriction that

6f(x',t') be divergenceless can be imposed. however, u(x,tlr) is not diver-

genceless in penaral. The possible disturbances 6u(x',t'Ir') are those which

propagate to the diagonal of tne (tr) Dlane to give a divergenceless Eulerian

field, and this does not correspond to a simple restriction on 6 f(x',t'Ir').

This situation may be handled correctly by means of a formal artifice. Let a

fictitious curlfree part of the Eulerian field be admitted and write

u(xtlr) = u S(x,tIr) + uC(x,t'r) (all t and r), (3.12)

where
C

9". lx,tjr) = 0, X u (x,tjr) = 0. (3.13)

Eqs. (3.12) and (3.13) imply

u.(x,tjr) = P M(V)u.(x~tlr), u1 (x,tlr) n M(v)u.(x,tjr), (3.14)

where
P.i() = 6.i - i (V), (3.15)

and, for any g(x),

.ij(v)g(x) a 2/ax I3x fDlx~y)g(yld y. (3.16)

The integration in (3.16) extends over the whole volume occupied by the fluid.

D(x,y) has zero normal derivative on the boundaries and satisfies

V_2D(x,y) = 63(x-[). (3.17)

Now replace (2.2) and (2.5) by

4(x,tlr)/3t = -uS(x,tlt).vu(x,t Ir), (3.18)
'SSS

(/at - vV2)u (x,tlt) = -_u (x,tjt)-Vu (x,tlt) - vp, (3.19)

u C(x,tlt)t = O. (3.20)

Clearly in these equations the fictitious field u'(x,t t) does not affect the

s Sr
evolution of u (x,tlt) or the parts of u (xtlr) and !ui(x,tjr) induced by

u (xt t). If u C(x,tIt) is initially zero, it stays zero. Therefore no
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violence has been done to the physics. However, (3.20) now defines the

propagation of 'impossible" disturbances on the diagonal of the (t,r) plane,

A

so that the function Gi (x,tlr;x_',t'Ir') is well defined for arbitrary initial

perturbations. The "impossible" perturbations actually are of physical

interest. Their propagation provides a measure of the distortion, relative

to a C-rtesian system, of a coordinate system which moves with the fluid. In

particular, the perturbation 6 uC(x,tIt') induced by a divergenceless force

6f`S(x,ttIr') provides such a measure.

It is convenient now to eliminate the pressure from the ecuations. When

there is no shear at the boundaries (e.g., boundaries at infinity) the elimi-

nation gives

vV2)ui(x-tit) - P. M(V)[u (xtlt)u S(x,tlt)], (3.21)
2 ijV - m

where

P.. MW P..(M)/ax + P. Ma)/ax.. (3.22)
13M - 1] - M 10 - I

Note that (3.21) is equivalent to (3.19) and (3.20) together, This equatimn

will be adopted hereafter. More general boundary conditions can be handled

by the methods of Ref. 3.

The equations for G.. can now be obtained by introducing force terms on1)

the right-hand sides of (3.18) and (3.21) and performing the functional

differentiation. Th* results are

Gin(x,t'Ir' ;x' t'Ir') 6n (x-x'-), (3.23)

•Gm(x~tlr5't'Ir')l~t = -u(~l~ ~nXtrt,'r)•

t- vV2 )C.(x,tjt;x',t'It') -P.. (V )[u (x,ti xItrx',tir)],_
in i - 11! -x z-

(3.25)

I

U



where As
G. .xtrxt'r) P. (V )G 3.:trx'tI'. (326)

1) -. m x M)

The prop~erty P. M = P. A(V) is used in writing (3.25).
ijID IM lu

4. STA~IISICAL FUNCTIONS

Consider a distribution of the fi-eids over statistical ensemble and

assume that the mean fields vanish for all argument values. The sirm1est

statistical quantities are then the covar.'ances

Y(X,t jr;x',!t I r') <(x,t Ir)%$x',t II r')

U..j(x,tlr;?',t'Ir') =<u i(X,tlr)u.,(x',thtrl)>.(41

which have the symmetry properties

'F(X,tlr;;x',t'tr') =Y(x',t'Ir'-x tlr),

U ..(x~tlr;x!,t'ir') =U..i(X 19tt'r';,x,tlr). (4.2)

Lnsemble-averaged Green's functions may be defined by

G(x~tlr;!s!,t'Ir') KG x-tlr;!',t'ir)>

They satisfy

3G(x tIr ;xt'Ir') z 66 (x-x') . 44

In correspondence to (3.14), U. may be decoc~posed into the tensors U..

S C SS ,SC CS cc
U i, U.., U.., U.. U~. Ui U. defined by

-- -j i i'

U..(x,tklz;x' t' Ir') P. (V )U .(x,t~r;x',t11')
ii - ,im -x Mj -

U. C x,t~r;xt,t~irI) = !.1 (E ,)U.(I trx'
ij- im xu X
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U (,tIr;jI,t'jr') =P (V )IT (V ,)U.(xtr;Itr),ec (45

The notation uased is that a superscript S or C refers to the index directly

beneath it.* The corresponding decomposition of GC.. is

G. C(x,tjr;L't'~tIrI) P. Ixt~ t)r'RQG)

G1 (I trxtI' G1 (xtrM','r'f *(V , etc. (4.6)

Tht following example illustrates the use of (4.6). The vector

gives the mean response(5US(x,t~r)> of the s~hear field when the imnosed

(statistically sharp) disturbance produices an initial tnerturbation 6u( x' ,t' IN)

The vector

gives the total resncase ( (7.!>to the corores~sive part 6u C x,ttirs)

of the initial perturbation.

When the ensemble is homogeneous, the covariances and averared Green' s

functions depend on the argiine-its x and x' only in the combination x-xI. In

this case the vavevector funct ions

?(k;tlr;tllrg) = (2)3,xtj;,,~r~-k(-, ~-l

G~ktlrtllt) fGx~tr;ý.tIrI~-i~k(x-Xr') dxx

G.(k;tlr;tlIr') = P J (a,tlr;x'.tIIrI)e -4-(-, - ~ - 47

for= a natural des--rivtion. The normalization chosen gives

fY(k;tIr;t'Ir')d 3k = Y(x,tlr;!.t'jIr'),

fu k~lrtlr'd kz .. x~tlr'x Virs

ijI



-13-

and
G(k;t'ir';tlr') = 1, -ij(k;t'1r';t'lr') = 6... (4.9)

When the distribution has reflectional sy~ett-;, the functions are

invariant to interchange of Y. and a,'. Then it follows that

uSC CS •C =r=CS - (410).. :U.. : O, u. . - •.. - O, ( *lO
i3 iJ j j i 4

for all argument va±ies. In a hoooFeneous distribution with reflectional

syrometry, the decomposition of U.. is coonmletely described by

U'S (k;tir;t'lr') P. P(k)Um (k;tlr;t']r'),

U j(k;tlr;t' It') n . (k)U .(k;tlr;t' Ir'), (4.11)
1jj

where
P. .(k) = 6.. - I. .(k), 7..(k) = k.k.k. (u.12)

The decorposition of G.. is similar.
13

5. DIRLCT-INTERACT!OiN EQUATIONS: SCALA? FIELD

Assume that the fields are normally distributed at an initial time to,

with zero means and zero correlation between scalar and velocity fields. Thpn

the initia. distribution is completelv specified by t(x,t _ It0' ,t It 0) and

U ij(xtl t 0 ;x' ,It 0 ). Assume that the r-an fields stay zero for all times.

The relations in Sec. 3 lead to the equations of motion

(3/3t - V2 )"(Xtjtx't'Ir') S(x tlt-x',t' Ir'), (5.1)

(a/at- cV2 )G(x,tlt;x',t'Ir') = H(x,tlt;'',t'ir'), (5.2)

x

3Y(x,tIr;x_',t'Ir')/at : S(x,tlr;x',t'ir'), (5.3)
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,tiere

S(x,flr;x',t'jr1) = -4(4(,tlt)'vX (x,tIr)*(W',t'lr')>, (5.5)

H(x,t Ir•',t, Ir') = -(j!(.t It)-V X (x~t Irx' ,tir' )>. (5.6)

The direct-interaction procedure yields approximations for S and H in

terms of T, G, and U.. and thereby produces a closed set of equatiois. The1)

method has been described for Eulerian fields in several papers. 2 93 ' 5 ' 6

Extension to the generalized fields can be made straightforwardly by using

the formalism developed im the preceding Sections. The siinlest way to con-

struct the approximation is an algorithm based on iteration expans ion of S

md d. Consider the zeroth-order equations obtained by setting equal to zero

the right-hand sides of (2.9), (2.11), (3.2), (3.5), (3.7), and (3.8). The

solutions of these equations are

•.(°)(,t Ir;x',t' Ir') = r,•.-')-/,p-i-'1/•,-r' )],

S(Olx,,t r) = fG(O)(x~t Ir;S' ,to 0 t 0 )•' ,to tt,)d3x' (5.7)

A(O) AMO (0) (0)
G displays no statistical fluctuation (G :G ). Since 4'O(x,tlr)

is a linear functional of the initial field, it is normally distributed. Note

that () (xtIr;xt,t'Ir') and v(0)(xtlr) have values independent of the

labeling times t and t'. The similar procedure for the velocity field, setting

the right-hand sides of (3.21), (3.24), and (3.25) equal to zero, gives

Gij(0) t2-l 6..[a4v(r-.rt)] 3 ep(I .'/4v(r-rt)],I 3

u (0) Ir) x fGiAj(x) Ir-Vx1' , 0 It 0)u.Z(X 't 0It 0)d X' (5.8)

A A

Formally exact expansions of G, #, GC., and u as functional :ower series

in the zeroth-order functions can now be generated by introducing the actual

right-haD sides of the equations of motion as perturbations and iterating.
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Tnese series may be substituted into (5.5) and (5.6) and the averages evalu-

atei by the rule for moments of a normal distribution. The results are in-

(0) (0)
finite functional power series which express S and d in terms of CG G..
T(0) .(0)
S(0). and U.. . Clearly only purt Lulerian velocity functions appear in the

1)

results since only the Eulerian velocity enters the equations of motion for

i(x,t Ir)

Tne lowest-,rder terms in the series for S and H are respectively linear

(0) (0O)
and bilinear in G ; they do not involve G . . The direct-interaction11

approximation is constructed by retaining only the lowest-order terms and, in

them, replacing all zeroth-order functions by actual functions. This yields

S(x,tlr;x',t'Ir') =

x3 ,f ((6t.r;X~sjs) a(x',tI

1 ax+rd 3vf ds U j(3,tlt;y'sls) 3''&trjsr

S- r ax. ay

+Jd 3yf rds Uij(x,tjt;y,sls)G(x',tIIrI;y,sjs) a 2T(mt r;I-asIs)
- ax av.

*Jd 3 4s U..(x,tjt;y,sts)G(x',t'Ijr';v,slr') a 2(• tr ) ('S.9
1 ' -3 ! E - (x i. 9 )

ri(x,tir;x',t' jr')r

d y dsUi(x~tlt;v'sls) aG( 1tlr;y,s~r') aG(y~sjr';4'• irt)

+fd3 V rds U..(x,tjt;y,sjs) aG(3j,tjr;,,sjs) a3,(Ytsls;i'Ito Ir')

r )i ay.

+fd y" ds U (x,tlt;y,sls) ,s.
r - - ax.
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Fig. 3 helps in understanding (5.9) and (5.10). The first two terms

on the right-hand side of (5.9) arise from the iteration expansion of the

*(x,tjr) factor in (5.5). The first term is associated with the evolution

from (t 0 ,tO) to (rr) along the diagonal in Fig. 3a and the second term with

the evolution along the vertical from (r,r) to (tgr). The final two terms in

(5.9) arise from the *(x',t'Ir') factor in (5.5). The first term on the right-

hand side of (5.10) is associated with propagation of the imposed perturLation

along the vertical from (t',r') to (r',r') in Fig. 3b, the second term is

associated with diagonal propagation from (r',r') to (r,r), and the third

term with vertical propagation fro ýr,r) to (t,r).

For further clarification, the derivation of (5.10) will now be traced

in more detail. An exact expression for the factor G(x,tir;x',t'Ir') in

(5.6) is

A
C(x itr; t ') -

re 
/

- d3 yf ds c-(°)x,.t~r~,slr',uj~y~sls )Gcy'slr';x',t'Ir')

-d J 3Yf ds G (0 )(x~tjr;y~srIs)U (v,sfs$) aG(X,sjr,&,tIjrt'--- --- v.

,rId 3 Cs G(0)(xt IriysIs)(ysIs) aG(y,sls;x' ,t' Ir' (

re- d d3yftd G(O)(x tjr;y,slr)u (V'slS) 3G(.ysjr;,&" t'Ir') . (5.11)

This follows immediately from the equations of motion and the definition of

G (0). The lowest-order iteration _ontribution to H is obtained by rerlacing

u(x,tlt) with u (0)(xtjt) in (5.6), replacina the quantitiez on the right-

hand side of (5.11) with zeroth-order quantities, inserting this result in

(5.6), and averaging. Changinr all zeroth-order quantities to actual quantities

in this result then gives (5.10).
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Equations (5.1)-(5.4), (5.9), (5.10), (4.2), and (4.4) are a comolete

set which determine Y(x,t Ir;x ,t' Ir' ) and G(x,t lr;x',t' Ir') for all argument

values when the initial function Y(x,t 0 It 0 ;6',t 0 It 0 ) is specified and the

Eulerian velocity covariance U..(x,tIt;ý',t' It') is knour for all argument1] - "

values. Setting t = r ana t' = r' in these equations gives a reduced set,

containing only Lulerian quantities, which is identical with the Eulerian

direct-interaction equation.s pr.-eviously obtained6 for the scalar field.

The direct-interaction equations may be characterized in two ways. First,

the approximations for S and H represent the summation, to all orders, of

certain well-defined infinite -abclasses of terms from the formally exact

iteration expansions. Second, the final statistical equations are exact

statistical equations for a model dynamical system which has sove important

properties in cocmon with the actual svstem. :hese matters have been exDlored
6

in detail in the pure Z:ulerian case.

The exact statistical auantities satisfy

jG(x,tlr;x',t'!r')d3 x 1 (5.12)
and

fS(x,tlr;ý,ttr)d3x = 0. (5.13)

For t = r, t' = r', (5.12) states that an initially introcucec quantity of

scalar fielc substance is conserved Dv both ccnvection a&nd molecular diffusion.

For t 0 r, t' $ r', it states that tae total cuantitv of scalar substance is

indepencent of whether the fiela is describec in Lulerian or Lagrangian

coorcinates. (Cf. (2.7).) Zq. (5.13) expresses conservation of

bv the convection process and also i.--lies

ý f](x,t ]r;x,tr i)G3x7 _ ,(.-
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which stal-s that the mean-square quantity of scalar substance is independent

of whetfktr a"cription is in Lulerian or Ldgrangian coordinates. An additional

exact property is that when K = 0 the functions V(x,tjr;x',t'Ir') and

G(xtlr;' ,t'jr') are independent of r and r'. This is because the scalar

concentration is constant along, the particle paths.

All the above conservation and invariance properties survive exactly

in the direct-interaction equations. Los. (5.12) and (5.13) mav be verified

by integrating (5.9) and (5.10) over space, transforming the results b-

partial integration, and noting that the U..' factors are solenoidal in i.

The indepenoence upon r and r' when K = 0 may be verified as follows. if

all the quantities on the right-hand sides of (5.9) ana (5.10) are independent

of the measuring times (the times following the vertical bars), then S and A

are ndependmt of r and r'. If so, ana d = 0, (5.1) and (5.2) Five identical

changes of the functions along the diagonal of the (t,r) plane and oarallel

to the t axis. Therefore the change parallel to the r axis is zero, and no

depenience on measuring time is generated by the equations. Following this

argument in furthor detail demonstrates the complete r and r' indeoendence.

A further property of the exact statistical equations which survives in

the direct-interaction approximation is the existence of equipartition equili-

briim solutions in the case 0 0 . If Y is appropriately normnalized, these

solutions satisfy

G(x,tIr;j',t'jr') = G(x,tlt;x',t'it'),(.

?(x, d r;x_'t' ir' ) = G( x,t Ir;x' ,t' ir' ), (5 5

when r > r'. Theequipartition solutions can be inferred for the exact

equations from the existence of Liouville and fluctuation-dissipation theorems



-19-

(see Appendix). No conuition on the velocity field other than incop.,essibility

and vanis.hing normal component on the boundaries is imlied. The equinartition

solution is physically unrealizable, but it is important because it expresses

the tendency of the convection to produce ever-sharper Fradients of tne

scalar field. If complete equilibrium were ever achieved, than, accordinr to

(5.15) and (4.4),

which indicates zero correlation length of the scalar fiela.

The compatibility of (5.15) with the direct-interaction equations when

S= 0 may be demonstrated by using (5.15) to replace all ý functions with

G functions in (5.1)-(5.4), (5.9), and (5.10), using (4.2) when needed. If

now a partial integration over y is perfor-med on the third and fourth terms

on the right-hand side of (5.9), using the fact that the J.. factors are

solenoidal in j, then it is easily seen that cancellations occur in such

fashion as to make (5.1)-(5.4) identical equations for &(x,tit;x',t'it').

All the above consistency -o.xperties of the direct-interaction equations

can be predicted from the existence of a rodel representation of the aD~roxi-

mation. A final important property imnlied by the existence of the model

representation is that the covariance f(x,tlr;x',t' r') oredicted by the

direct-interaction equations is realizable as the average over soce possible

ensezable of fields and therefore satisfies all the realizability inequalities

which a covariance nust.
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6. LKDI EQJATIONS: SCALAR FIELD

Suppose for now that the spatial domain is infinite and the fields are

statistically homogeneous. Consider the function

s(x,ottt ;E',tl t) =

fd 3Yf" d U. (-x'tlt•'~sls) [LG(x'tlt;y'sis)- _ ("tt;'sl,)

0 11

+ c(x',tlt;ysls) T(_A,tlt;y,sjs) (6.1)
ayi

given by (5.9). The Fourier transform of (6.1) with respect to x-x' yields

the direct-interaction approximation for the transfer of mean-square scalar

substmcee betwe-en the wavevector modes of the scalar field. The integration

over s in (6.1) expresses relaxation and memory effects in the turbulent

flow. Clearly the magnitude of the integrals is dependent on the Eulerian

correlation times of the velocity and scalar fields. These correlation times

play the role of effective times for remembering contributions to the transfer

function from dynamical interactions during the nast historv of the fluid.

The appearance of the Eulerian correlation times in (6.1) gives rise to

a serious flaw of the direct-interaction approximation in the description, of

convection effects. The trouble, which is discussed in detail in an earlier
1

paper, can be stated as a failure of the direct-interaction approximation to

preserve the invariance properties of the exact equations under a random

Galilean trmiusformation. SupDose that u(x,t) is augmented by an addition v

which is constant in space and time, statistically independent of u(x,t) at

any instant, and Gaussianly distributed. This means that the systems in the

ensemble are subjected to uniform translations that differ randomly from

system to system. The translations do not affect the rate of transfer of
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scalar substance among the wavevector modes in any of the systems of the

ensem.le, anc therefo'.e it is clear that S(x,tJt;x',tlt) must be invariant

under the ranoom , alilean transformation. But (6.1) is not Invariant, because

the Lulerian correlation times are nct invariant. The latter deoend on how

fast the velocity v sweeps the fluctuations in the w field past fixed ob-

servation ocints in soace.

The following question may be posed- Is it possible to alter the

direct-interaction equations so as to incormorate invariance under randcc

Calilean transformation, without giving uo any of the conservation, invariance,

and equilibrium properties exhibited in Sec. 5? Investigation has so far

indicated that the objective can be achieved only in part. There appears to

be a unique prescription for alterinr the direct-interaction formulas for S

and H so that: a) The conservation, invariance, and equilibrium properties

of Sec. 5 are all presered. b) Exact invariance to random Galilean trans-

formation is realized in the case K = 0. c) When the velocity field con-

sists wholly of a Gaussianlv distributed uniform velocity v, the results for

Y(x,tlr;x.',t'Ir') and G(x,tlr;x',t'tr') are exactlv correct, without restriction

on K. The prescription is:

(1) Write U. .(x,tlt;y,sls) in (5.9) and (5.10) as U. S(x,tlt;v,sls) so
- I) -

as to exhibit explicitly the fact that it is solenoidal in j.

(2) Then, ever-ywhere oa the right-hand sides of (5.9) and (5.10),

change each labeling time s to a t. (The labeling times are the time

arguments which precede the vertical bars.)
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Eq. (6.1) is now replaced by

S(x~tft;xtIttl)=

+ G(x' ,tit;y,tjs) 32LttYts (6.2)
)yj J

The s integration in (6.2) is over L~agrangian histories, and it is now the

Lagrangian correlation times which determine k-&v the transfer function

remembers past dynamical events. More generally, aoplication of the Dre-

scription to (5.9) and (5.10) gives

to 1) d U-(,j;,t. GKtrvts '~ltl i

+ 'tf&tr [±iU5r~L~.2 I S (Xt t;cI )ds]
1 r

3t'O 1 2

rf _f dsU('l~~i)~xtit;,-r) (6.3)

1 3 1rf is, U (xotlt;y~tls) 3G(A,tjriy,tjIs) aG(y,tj;'tI
tt x. av.

3 f [r s tr;& .t'Ir) fUS(tltt )ds (6.4)s;vt

1 3 1

N't ra t II r S x~t t;ý t 1,)ds - 6.4
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In the secona term on the right-hano side of (6.3) and the third terff. on the

right-ha;.d side of (6.4), the y in-egrztion as been performed bv using (4.4)

and the fact that the factor U.i(x,tlt;v,tis) is solenoidal in i. Los. (6.3)
1j - -

and (6.4) will be called the LiDI (Lazrangian-historm direct-interaction)

approximation hereafter.

The invariance of the LnDI equations to random Galilean transformations

will be discussed in a moment. First, it is easy to see that the conservation,

invariance, and equilibrium pronerties noted in Sec. 5 all survive. For the

unaltered direct-interaction equations, tnese properties depend upon tne

cancellation or identity of Darticular integrals in the expressions for S and

n. The alteration does not change the limits of the integrals, and identical

integrands are subjected to iaentical changes. Thus the demonstration of all

the properties goes through for the LHDI equations just as before. It is im-

portant to note that if rule (1) of the alteration prescription were not im-

posea tne equilibrium property would not survive. This Droverty reQuires that

the velocity covariances whicn apDear be solenoidal in j, ana U. .(x,tt;y,t s)

need not be Folenoidal in j for s # t.

The Galilean transformation properties are conveniently investigated by

writing the equations in the wave-vector domain, using (4.7). _i.qs. (5.1)-(5.4),

(6.3), anc. (6.4) ame replaced by

(ia/t + .k2)Y(k;tlt;t'Ir') = S(k;tlt;t'1r'), (6.6)

(3/at + Kk 2GktttI0 = ri(k;tlt;t'Ir'),(6)

I ir )/at = St~ttrt' i'),(6.7)

and
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t1 0

3S

+k~k re as U S.(q;tlt;tls)G(k;telr:;tjrt)'t(p;tjr;tjls)(.)

ti(k;tlr;t'jr')z

re

-k k. YAf ds U S.(q;tlt;tlrs)c-(p;tjr;tls)G(k;tls;twlrs)

-k~k.G(k;tlr;t*Irt)Id 3 qfds U S (g;tlt;tls). (

In th~ese equations the operator notation

and the solenoidal properties of U. S are used.

Supoose that the random imiforrn velocitv v is statis ically isotropic.

(This is an inessential restriction.) rhen the exact effects of the random

translation on G and T are exp~ressed by

IIG(k;tlr;t'jr')J = 1x _Lv 22tt) C~~l~lr)0
LY~~tl~t'rl) =exp[- I- vk (t-t, )IJ[(k;tlr;t'Ir')",i,(.2
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where v0 is the rms value of any vector component of v, [ denotes a value

with v atisent, and [ ] denotes a value with v present. Eq. (6.19) follows
V

frm the Gaussian distribution of v and the fact that, according to (2.9)-

(2.11). the scalar Fourier coefficients in the individual systems of the

ensemble transform according to

[*(k,tlr)]v = exp[-iv-k(t-t 0 )][i&(ktjr)] 0 . (6.13)

(Cf. lef. 1.)

.(6.5)-(6.8) and (6.12) imply that S and H transform according to

[S( ;ttr;t'Ir')]v = exp1- . v k22t-t')2]{[S(k;tlr;t1lr'220
v 2 k 2 (t-t'])[S(k;tlr;t'Ir')]}

[d(k;tjr;t'{r')]v = exv[ v2 k2(t-t')2]l [H~k;tjr;t'jr')]0

v 2 0
2 2

v oik (t-t')[G(k;tir;t'1r')]o1. (6.14)

The effect of the transformation upon the velocity covariance itself is
S )v " 2  1v 2k2  t)21U'trtr)

['U..(q;tir;t'Ir')] = 6 ij6. (q)v0 2 exp[ v2 0(t-t' 2[UiS(q;tlr;t'ir')]

(6.15)

Now take K = 0. Then the LHDIl equations yield T(x,tlr;x',tIr') and

G(x,tlr;x',t'Ir') values wtich are independent of r and r', in agreement with

the exact functions. Using this fact (noted above), it is verifiable by direct

evaluation that the substitution of (6.12) and (5.15) into (6.9) and (6.10)

gives (6.14). This demonstrates the desired Galilean invariance Drooerty.

It is important to remark that this result would not be obtained if any or

all of the labeling times s were changed to any value other than t, in forming

the UiIM equations.
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Next take s a 0 and let the velocity field consist solely of a random

uniform field:
s 31 2

U S(q;tlr;t'ir') - 6.6 (q)vo (6.16)

Direct solution of the equations of motion in Secs. 2 and 3 then yields the

exact values

T(k;tlr;t'Ir') z exp[- .v k 2t-t2r')]Y(k;toIto;toIt2 '0 0' 0 0

G(k;tlr;t'lr') = exp[- v k 2(t-t') -_k 2(r-r')] (r z r'). (6.17)

Direct evaluation shows that the values (6.16) and (6.17) are also exact

solutions of the L&DI equations (F )-(6.10).

In the case of a general isotroDic, homogeneous, and statistically

stationary velocity field, a Peclet number B may be defined by

B = V0 /c, (6.18)

where v0 is now the total rms value of any vector component of velocity and

t is an appropriate correlation scale-length for the velocity field, say the

integral scale.7 In the cases of uniform translation treated above, the

correlation scale is infinite and so, therefore is B. 'hen B << 1, the

turbulent convection represents a small perturbation on the molecular diffusion

process, and theb ulerian and Lagrangian histories of the scalar field differ

inappreciably. In this case the unaltered direct-interaction and LHDI

aoproximations give nearly the same results. A formal statement of this fact

can be made by noting that the iteration expansion discussed in Sec. 5 is

actually an expansion in powers of b.8 The exact functions S and H are then

power-series in ii, with the lowest-order terms linear in B. If the duirecc-

interaction andr LHDI vc;lues for S and H are expanded in powers of B, the terms

linear in b agree with the exact expansion. In the higher powers, the two
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approximations differ froo each other and from the exact expansion. In the

asymptotic situation of convection by a random uniform velocity, treated

above, the LhDI values agree with the exact extiansion to all orders, while

the unaltered direct-interaction values give the higher orders with rapidly

deteriorating accuracy. (See Ref. 8)

It should be stressed that one consistency propertv of the direct-

interaction equations has not been shown to survive in the LHDI equations.

No model representation so far has been found for the latter, and co usequently

it cannot be asserted that the function ?(x,tlr;x',t'Ir') they Dredit-t is

a realizable covariance. This matter will be discussed in the next Section.

7. EXAMPLES OF THE SCALAR EQUATIONS

Sec. 6 contained a demonstration that the LHDI equations yield exactly

correct T and G values for convection by a Gaussianly distributed uniform

and constant velocity field. This is a nontrivial success. The unaltered

direct-interaction equations predict a peculiar wave-front behavior for

G(x,tlt;x',t' It') in the same situation, while cumulant-discard approximations

58or truncations of the iteration exDansion lead to disaster. The; success

here gives a degree of redssurance concerning the absence of • demonstrated

model representation for the LHDI equations. The question of model representa-

tion has assumed importance because the cuvulant=discard approximations,

truncations of the perturbation expansion, and certain higher `nfinite partial

summatiors of the perturmation expansion, all of which have no model

representations, have been found to lead to grossly unphysical behavior.

This has taken the form of negative wave-vector spectra in the scalar problem9
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10
and in Navier-Stokes turbulence dynamics. With each of these approximations,

the unphysical behavior is apparent in the problem of convection by a randoo

uniform velocity field. 6 ' 8

It has been noted that G and T are independent of the measuring times

when K 0. In this case the G equation given by (5.2) and (6.4) reduces to

S2 [•I , 't) it .(]a- Glx,t;x',t'I) •-. L -ra x. t L t rtU x,tjt;x~tjs)ds ,

G(x,t'x't') = 63(x-x'), (7.1)

where G(x,t;xl,t') is written for G(x,tt;-x',t'It') and (4.4) has been used.

if U. . has the isotropic homogeneous form,3
S

U S (x,tlr;x_,tls) = 6..U(tlr;tjs), (7.2)

then (7.1) has the inmediate solution

ý;(x,t;x1,t^) = [2,a 1 (t,t')-3/ 2 expjL[-x-x' 12/2o0(t,t')], (7.3)

wheC ° 1(tot') = 2f tos dr U(sls;slr). (7.4)

t' ti

Eq. (7.4) yields
<l•-X 112> = 3a I(t~t,). (7.5)

These results may be comoared with exact formulas obtained by the method

of Taylor. 1 1 ' 5 The displacement of a particle from x' to x in the interval

from t' to t is, by definition,
t
f-x to jj(,tlIs)ds.

hence,

<Ix-x'12> = 30(t,t'), (7.6)

wh --re t t

0(t,t') =f drf ds U(tls;tlr). (7.7)
to to
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If the statistical dependence among the values of u(x,tls) has an effectively

finite range in t-s, then a central-limit argument irplies that for very large

t-t' the function G is Gaussian; that _s, C is given by (7.3) with aI replaced

by 0. On the other hand, Roberts5 has found that for very small t-t' the

.12
function G is again Gaussian. Suppose now tnat the turbulence is statistically

stationary. Since u(x,tHs) and u(x,tr) are measured along the same particle

path, it follows from the stationarity and homogeneity that U(tls;tlr) can

depend only on is-rl. Then U(tls;ttr) = U(sls;slr) and o(t,t') a 1 (tt').

In this case the L.iDI result for C(x,t;x',t') is as;,rDtotically exact for

very >all and vecy large t-t', while tne result for (Ix-x' is exact for

all t-t'.

The spectral transfer equation yielded by (6.5) and (6.9) is

t

(at + 2Kk 2 )V(k;tlt;tit) = 2k.k aA f 'iS(q;tlt;tis)ds-- j p,q . -,

'0

x (G(k;tjt;tls)Y(p;tlt;tls) - G(p;tlt;tis)Y(k;tlt;tls)]. (7.8)

Wihen 0 = 0, the G and t functions are independent of labelinr times, and (7.8)

takes the simzle form

t -

T(k;t)/t_ = 2kik-41, [I(p;t) - T(k;t)]_ U' (q;tlt;ts)ds, (7.9)

wnere V(k;t) = Y(k;tlz;tlt) and (4.4) is used. The x-space equivalent of

(7.9),obtained from (6.2) specialized to the homogeneous case, is

1 2 to -

0
where

i..(x-x';tlt;tls)" 2[u S (x'tlt;x'tls) - J. - uS(x~t t;x7,tjs)]_ (7.11"

tis s

and Y(x-x',t) Yf(x,tit;x'1,t~t). rhen the turb)ulence Is statistically
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stationarv as well as hoooceneous,

1) xtlt;x~tlt) = 1)(x_,tls;x ,tls),

in accord with a remark made above. In this case, B.. is the variance tensor

of the velocity difference u(xtIt) - u(x',tls).

8. LHDI EQUATIONS: VELOCITY FIELD

The direct-interaction atvroximatiom and Lagrangiar-historv alteration

go through for the velocity field in close analoiq tr - scalar case. The

analysis in this Section will be restricted to reflectkon-invariant homo-

geneous turbulence. More general flows, with nonzero mean fields, can be

treated with the methods of Ref. 3. Assume that at time t the homogeneous

Lulerian field is Gaussianly distributed and divergenceless. Then the

different Fourier components are statistically independent and the initial

distribution is fully specified by the function U.. (k;to1 t;tot). The

exact statistical equations are

03+ vk 2)U in(k;t It;t'c'I'). = S in (k;t it;t' It'),_ (8.1)

0/3t + vk 2 )G, (k;tlt;t'Ir') = Hn(k;tlt;t'Ir') 1  (8.2)

An- in-
3U. (k;tlr;t'lr')/3t = . (k;tlr;t'jr'), (8.3)

3Gi,(l-;tlr ,t'_ r')/3t = Ni•n (k;tlr;t'_ r'), (8.4)

where Sin, Hn, Min, and N. are the Fourier transforms, with respect to x-x',

of
S. (xtlt;1,t'lr1) - )<uS(x,tit)US(x,tlt)u (x,,tlr')>,(

in - -2 im -x n
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Ri

* *' '' ,. %j'r' rn~ 0 v- 0 1 .. I I ,' ~ I.~*

SN. (a t Irlx',t'Ir') -(,ux1t tt)G.ini

-...(S (x,t\t;'•,t-'lrn)u. (i tir )'x? , (8.6)
Amm

The direct-interaction approximations for Si, i in' ý ,in, and N. areinn

formed by the same rules as in the scalar case: Iteration expansions for

these 4uantities are constructed as functional Dower series in the zeroth-

order covariances and Green's functions. The latter satisfy the zeroth-

order equations formed by discarding the right-hanc sides of (3.18), (3.21),

(3.24), and (5.25). Then the leacing terms only are retained in the exnansions,

and, in them, all zeroth-order quantities are reDiaced by actual quantities.

The prescription for obtaining the L1iDI aprox-,r.atjons for the velocity

field is simply:

On the rirht-hand sides of the direct-interaction ex•ressions for S. ,
inn

A rule like rule (1) of Sec. 6 is not needed here because the reGuired S

superscripts are automati:alJv suDolied as a result of widtinE the equations

of motion in the form- (3.18) and (3.21).

The final results for the L-iDI aDmriirmat cns to Si, rin M'n and:. are
Snin

S. _(k;tlt;t'jr') =
a t SS-P.. (k), )f disr" ();t t;t' s)U (-i;t 1t;t Is)'U -(k;t' Ir ;t Is)

- -pq bca -t t b- mc :- na-

Pds G ( ;t' j';t-'? (S-4--It;t )SY` t;tls)2 1- m ij ( labc~k ,qq t na M- " s'qk_' 't

t0

+}im(k) F A; G (k;t';r'S;tjr')(: (, t!t;t (r') Y S (,:;tit;t is), (S.9)ii , -r' I

rtag,
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H. (k;tlt;t'jrl)
in

-IF (k)l A P (p)f t sC. ( tlt~t's)UIs tq-titts)G s(k;tls;tlIr')

-P. Ml) q fJr ds G (P;t It;t Irt)tJ s(q;tjt ;t Ir )S (k;tlIs;t II r") (8.10)
iim ýpqa , J j bb - an -

M, ~ ~ ~ ~ a (ktrtll=-mqd3q qtttrfd k;thlrt;tls)

_16 P bca f r ds G (p;tir;tls)U ss(q;tlt;tls)U s (k;t'Ir';tls)

- U .(k;t"Ir';tlr)k kfd 3qftd U s u5 q;tlt;tls)ic M mc

4.~ -ý&PPG- totrtr~ fdsUs qttts

+ 1p qGI ds G rktllr') (;tlrli.s(;tlr;+)J ) ds U(q;tlt;trls)
pqq mcn ra na- -m

a q J ds G s'I'

_ý pP..~~ ds G5 mc (qtttsui ptrtsU (k;ttlrI;tls), (8.11)

N.i (k;tlr;t'Ir')

A p k G (R;tlr;tlr')G (k;tlr';t'ir')1 r ds 1uSSqttts
_ý.q c iaan tv mc

rr
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-k k c. (k;tlr;t'lr')fd 3 of ds USS(q;tlt;tls)m c in - mc -
r

tS

-kmJ cJqU i(q;tlt;tlr)J ds GS .;tls;t'lr")Jc m cn -
r

p• p k Cs (o;tlt;tlr')G (k;tir';t'Ir')S ds U. (D;tlr;tls)
o,q m c ma• an- ic -

r'

.•A D GS (q;tlt;tlr')U. (n;tlr;tlr')I ds c (k;tls;t'lr')p,q_ c ma- ia "t cn

_(q)f ds Gmq ttlt~s)u S(P;t~ritIs)GS' (k;tis;t'Ir'), (8.12)

m cab 'r ib an*-

where

P.. (k) = k P. .(k) + k.P. W.). (8.13)i]m - 1] - ? n m-

The paths of evolution and protaFation involved in these equations are

indicated in FiV. 4. The solenoidal properties and (4.9) have been used it,

writing some of the terms.

Los. (8.1)-(8.4), (8.9)-(8.12), and (4.9) formi a complete set which

determine the full functions U in(k;t 1r;t' Ar') and G in(k;tlr;t'Ir') from the

prescribed initial values U. (k;t It t0;t0 ). As in the scalar case, they
in - 3 Q0 0

preserve important oroperties of the exact equations of motion: Conservation

of energy by the nonlinear interaction; tne invariance property

at fui (X t!r;x'tdr)d~x 3 ; (81

and the existence of formal equipartition equilibrium solutions of the forin

U..(k;tlr;t'ir') = 3..(k;zIr;t1r'?) (r ! r') (8.15)

i- 1] -

in the case v = 0. A property of the appr'oximation which has no analog in

the scalar case is tnat the incomoressibility of the Eulerian velocity field

is Dreservea: UJ..(k;tlit'jr') vanishes for all ar-ument values if it isii -
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zero for t z t' = r' = t 0 .

All of these consistency properties can be inferred for the unaltered

direct-interaction equations fro the existence of a model representation.

As in the scalar case, they can be verified for the LHDI approximation by

direct examination of the final statistical equations. The cancellations

of terms in (8.9)-(8.12) associated with the conservation, invariance, and

equipartition properties can be demonstrated by using the solenoidal

property with respect to indices beneath S suDerscripts and noting the

geometrical relations

k = p + q, P (k) P. .(P) + P i (q). (8.16)
-ijil' jmi.. - Ml) -

The preservation of incompressibility can be verified by tracing the oath

of evolution of U .(k;tit;t'Ir') and U..(k;tjr;t'It') and notIng that theij 3

presence of projection operators P or supersci'ipts S in (8.9) and (8.11)

precludes the generation of any increments which are nonsolenoidal in i.

Lq. (4.2) is needed in the demonstration. [Some of the S superscripts in

(8.9)-(8.12) are superfluous because of (4.10). They are retained in order

to make it easier to trace the way in which the various terms arise from the

pertazbation expans; on.]

Equations (3.")) and (3.25) are not fully invariant to Galilean trans-

formation as they are written. To obtain invariance, the respective ternns

C-v-vuC.(X~tt I.t -v-v G.c (x,tlt;xc',t'lr') (8.17)

must be added to the right-hand sides, where v is tht, uniform. translation

velocity. This is a formal device which insures that "impossible" perturba-

tions (see Sec. 3) are translated along with everything else. The added

terms make no change in the evolution of u(xttr) when the initial Eulerian
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field is divergenceless. Uith this change, it is easily verified that the

exact statistical functions transform as follows under the isotropic random

Galilean transformation considered in Sec. 6:

[Ui(k;tlr;t'lr')] = exp[ - 12 vk[(t-t' k;tlr;t'Ir')]O, (8.18)
1 2 2 0 , i(ktr;tn{r,)] (.

[G (k;tlr;t'lr')] = exp[ - _vk (tt) )[G.
;nv 2 0 in 0 8.9

The notation here is the same as in Sec. 6. A further transformation law is
1 22 )2[n

CSn(k;pgq;t;t')- = exp[ - v k 2(t-t' -[S (k;pq;t;t')]0  (k,j•,_ 0),

(8.20)

where S in(k;p,q;t;t') is defined by

S in (k;tlt;tllt) = p,q Sin (k;p1q;t;t'). (8.21)

Eq. (8.20), and similar transformation laws for other functions, actually is

implied by (8.18).

By analogy with Sec. 6 it riight be expected that the velocity-field

UiDI equations exhibit invariimce to random Galilean transfcrmation whenever

v = 0. This is not the case. Verification of Galilean invariance in Sec. 6

depended on the fact that the scalar statistical functions are independent of

measuring time when 0 = 0. Hcwever, variation of the velocity along the

particle paths arises from pressure- as well as viscous forces. Consequently

U. (x,tir;x',t'Ir') can vary with r and r' when v = 0. The velocity-field

LHDI equations exhibit exact Galilean invariance only under very restricted

circumstances: when v = 0 and the spatially nonuniform part of the velocity

field is infinitesimal in comparison to v0 . In this case, for elapsed times

not indefinitely large compared to (v 0k) variation of U (x,tlr;x',t'Itr')0 in--

and Gi.(,tlr;i',t'Ir') with r and r' can be neglected in computing Si,, etc.

Then it can be verified by direct substitution that the LHDI equations yield
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(8.18)-(8.20). In carrying out the demonstration, care must be taken to

include in the LWDI equations all the extra terms induced by the additions

(8.17) to the underlying equations of motion. A ooint of consistency i.

that these extra terms turn out not to affect the evolution of U. (k;tlr;t' r')in -

S Cor of G (k;t r;t' r'), provided that U (k;t0It0;t0
in -. I in - t0 ;0 0 ) 0 aihs

The invariance properties of the LADI equations u,'oer random Galilean

transformation may be compared with the behavior of the unaltered direct-

interaction equations. For t = t', (8.20) exDresses the fact that tne random

uniform velocity does not affect the simultaneous trip2e correlations induced

by interaction of the various nonzero wave-vector components. In contrast,

the unaltered direct-interaction approximation predicts a spurious aecav of

these correlations with a characteristic time --(v 0k)

9. RiALATIOt. TO ThE KOIJ.OGOROV THLORY

When tne turbulence is isc-ronic, U. and Z. take the forms
in in

Uin(k;tlr;t. I') = P (k)US(k;tlr;t'ir') + -i. (k)J C(k;tlr;t'ir'),inni-- In --

G. (k;tlrt'ir') = P. (k)GS(k;tlr;t'ir') + '. n(k)G (k;tlr;t'Ir'), (9.1)
1 r, ~ in-I

and the LIDI equations of Sec. 8 can be reduced to scalar form. in -articular,

(8.9) gives the energy-transfer function

2tf C, S ST(k~t) r. 4*2k3 g.qdpaqý- ds~a(k~p~q)r$(k ;t !t'.t s)U$ (r;tl]t ;t s)U (9 ;t it;t is)

to

C S
-b(k,pq)• (p;tlt;tls)U (q;t!t;tis)U (k;tit;tls)J, (9.2)

where T(k,t) is defined by

,k 2C. (k;tlt t t) = P. (k)-(k t) (9.3)in In ')
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The ;ntegration ff. in (9.2) is over all wavenumbers p and q which can form

a triangle with k, and the geometrical coefficients a and b are the same as

in the unaltered d'rect-interaction formula. 2

The integration over the past in (9.2) involves correlations measured

along the paths of fluid elements, in contrast to the unaltered direct-

interaction app Dximatio where the time correlations are taken at fixed

points in space (cf. Sec. 6). For a fluic obeying the Navier-Stokes equation,

the change of velocity along particle paths arises solely from the viscous

and pressure forces. If the terms representing these forces are omitted from

the equations of motion, then US (k;tlt;tis) and G S(k;tlt;tls) are independent

of s. this property is preserved in the LADI equat-fons: If the viscous and

pressure terms are dropped, the equations for propagation of the statistical

functions parallel to the t axis and along the diagonal in the (t,r) plane

become identical, and there is no variation with measuring time r. Thus (9.2)

states that the effective relaxation time for triple correlations of simul-

taneous amplitudes of wave-vector triads is determined by memory and decay

times associated with the viscous and pressure forces encountered along the

particle paths.

Now consider statistically stationary high-Reynolds-number flow. Suppose

that an inertial range exists. By this is meant a range of wavenumbers below

which lies n--t of the kinetic energy and above which lies most of the mean-

square vorticity, or dissipation. If the energy-spectrum follows a nower law,

these suppositions require

E(k) kn (1 < n < 3), (9. )

where E(k) = 2¶k2 US(k;t1t;tIt).
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Both the viscous and pressure terms in the Navier-Stokes equation involve

velocity gradients. With a spectrum of the form (9.4), the energy-range

velocity excitation makes a negligible concribution to the mean-squaree

acceleration of fluid elements, provided that the flatness factors of the

statistical distribution of the energy-range wavenumbers are not too large.

This implies that, if k is in the inertial rang?, the correlation time

t
T k f U(k;tlt;tls)ds/U(k;tlt;tlt) (9.5)

is negligibly affected by the energy-range excitation and is, in fact, the

order of the reciprocal rms vorticity associated with wavenumbers of order k.

That is,

Tk % (vkk)'l1 vk = [kE(k)] 1 / 2 . (9.6)

This argument carries over to the LHDI equations because the gradient operators

in the Navier-Stokes equation are, of course, carried through the perturbation

analysis that underlies the approximation. The vorticity associated with

wavenumbers much higher than k does not contribute appreciably to Tk becauze

of averaging effec'cs over spatial volumes of order k"3 and times the order of

The above considerations, taken together with what is known about the

predictions of the unaltered direct-interaction equations, imply that the

LdDI equations yield a Kolmogorov inertial range (n = 5/3) and the associated

Kolmogorov dissipation range. Apart from the appearance of different time-

correlations, the unaltered direct-interaction and the LHDI equations are

identical; they have the same coupling coefficients for the interaction among

the wavenumber modes. The unaltered equations give an inertial range with
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n - 3/2 and local energy-transfer within the range. It was shown in detail

in Ref. I that this value for n is due to the aopearance of the LDulerian

correlation time (v 0 k)-, where v0 is the total rns velocity component, as

the effective memory time for simultaneous triple correlations. It was

demonstrated in Ref. 1 that the Kolmoporov spectrum emerges if this time is

-1
re-laced by (v kk) .

If the velocity field has a Kolmoporov inertial range, then similar

arguments show that the LUDI scalar equations yield a 5/3-law scalar field

inertial range and yield Richardson's law for the relative diffusion of two

particles. Roberts investigated these questions for the unaltered scalar

direct-interaction equations and found, in accord with the velocity-field

case, that the Kolmozorov and Richardson laws emerged if the effective

memor-. times in the inertial-range scalar transfer function were ^ (v k W

If the above arguments are sound, to what extent are the LHDI results

a justification for Kolmogorov's assumptions? Very likely, the principal

support they provide is equally well supplied by an elementary argument.

The LUDI equations can only demonstrate some self-consistenct features of

Kolmogorov's basic assumptions. But these featLes are already demonstrated

to essentially the same extent by the fact that Kolmogorov's dimensional

analysis yields an inertial-range spectrur which falls within t1- bounds on n

given in (9.4). A rigorous proof of the 5/3 inertial-range law would involve

much more than demonstrating self-consistency at the level of covariances or

spectra. The Kolmogorov law is a statistica, assertion. If it is correct,

there can still be exceptional flows, or exceptional regions in a g" ten flow,

which do not obey it. In order to estimate the possible contribution of such
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exceptioms.it would seem necessary to have sove successive ap-roximation

scheme in which errors can be bounded.

What the LhiDI equations do provide, assuming again that they turn out to

have well-behaved solutions, is a quantitative embodiment of Kolmoporov';

ideas, obtained by precisely defined analytical oDerations on the havier-

Stokes equation. It can be argued that they do this with the mximum

economy of material that might reasonably be expected. The Lagrangian

correlation time seems intimately involved with Kolmovorov's reasoning, and

it is clear that in general the Eulerian and Lagrangian correlation times

must be treated together. In the energy-ranre the two times are intimately

related. Therefore it is plausible that an analytical approximation applicable

to all spectru ranges should involve the full function U..(x,tlr;x',t' r').

Knowledge of the full function provides physically interesting information

which cannot be obtained from the Euler" - covariance: for examnle, the

covariance of particle acceleration.

The I4DI equations are substantially more coeDlicated than the unaltered

direct-interaction equations for the pure Zulerian field. However, they are

very mich less complicated than the next-higher Eulerian anDroximation above

direct-interaction. The latter yields final equations involving triple

corzelations explicitly, together with associated higher Green's functions,

and consequently involves enormous geometrical comolication. Despite this,

it is only partially successful in suppressing the spurious relaxation effects
I

of the unaltered direct-interaction approximation.

If the details of the time-correlation functions are not desired, these

functions may be fitted to functional forms which leave only certain charac-
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teristic times to be O-etermined fror the LiDI equations. This Drocedure is

13, 1successful for the unaltered Eulerian direct-interaction equations.

10. SOMo WZAK POIATS OF ThE -UiDI APPROXIMATION

It was remarked above that a model reoresentation for the 1.zDI equations

has not been found and that therefore realizable covariance functions are not

guaranteed. In contrast, the existence of a model reoresentation for the

unaitered direct-interaction eouations for the reneralized fields Fives this

guarantee. The special solutions so far found for tne Li")I equations aive no

hint of unDhvsical behavior, in the sense of negative spectra or ti.e-

correlation functions which do not fall prorerly to zero at infinite cifference

times. Aowever, the intricacies of the equations are sufticient that further

reassurance would be comfortinz.

The LEDI equations have been obtained in this paper by an heuristic

modification of the direct-interaction equations that expr sses analytically

Kolmo-orov's idea of examining the dynamrics of the Lulerian field in coordinates

moving locally with the flow. .,ithin the Leneral structural framework of the

direct-interaction equations, the alterations of the trizle-moment formulas

seem to be unique. Any change in the rules given in Sec. 6 anc 8 appears to

result in less of one or more of the conservation, invariance, and ecuilibrium

oroperdes. If rule (1) of Sec. 6 (insertion of S suDerscrints) is chanced,

the equioartition equilibrium solution is destroyed. If the labeling times

s are changed to anything but t in any or all of the terms, the Galilean

invariance properties are lost. However, no evidence is presented that the
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LHDI apprcximation is related to anv formal expansion schene in the clear

way that the unaltered direct-interaction aoproximation is related to the

iteration expansion in oowers of zeroth-order covariances ind 3reen's functions.

The direct-interaction equations vieli values of the covariances which, when

exnanced, agree with the exact formal exDansion to the lowest order in the

zeroth-order functions and which contain well-defined infinite subclasses of

the higher-order terms. If the LHDI values are exmanded in the zeroth-order

functions, they also agree to lowest order, but so far no clear relation of

the higher-order terms to the exact formal exp~ansion has emerged. Even where

the LiiDI equations give exactly correct final results, the structural relation

of the results to the term-by-term iteration expansion is unclear. This may

be a less serious lack than the absence of a model representation, because

the iteration expansion, and all the other formal expansionsso far oroDosed

for the turbulence problemare almost certainly divergent and the collecting

of subclasses of terms from them therefore need not be _meaningful.

It should be noted finally that the LHDI equations annear to yield less

statistical information than the unaltered direct-interaction anprcxima.tion.

The latter yields a value for the general triDle moment of the form

<u.(xtlr)u_(x',t'ir')u m(x",t'r")>.

The Ln•)I prescription covers only those triple morents which appear in the

equations of motion for the covariances; that is, moments in which two of

the times t, t', and t" are equal. If all three times are different, it is

not clear what fixed value should replace the labeling time s in carrying

out the Lagrangian-history modification.
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APPENDIX: EQUIPARTITION SOLUT'ONS

Lxpand the Eulerian field P(x,t) in the series

,Ixgt) •O(00 (W, (Al)

where 4 (x) is one of a complete set of real orthonormal eigenfunctiors of

the equation 2V. +n ÷ •nnQ. (A2)

The complete set consists of a set which vanishes everywhere on the boundarsss

and a set whose normal derivative vanishes everywhere on the boundaries. Let

n (' 1,2,...) label the eigenfunctions in order of nondecreasing An

Eq. (2.9) with K = 0 gives

where the A nm(t) are functionals of u(x,tIt). The sum

nme
32= f[,x~t)) 2 d3 x )

is a constant of motion for any initial condition. Suppose that only Vn and

% are excited initially. Constancy of (A4) at the initial instant then shows

that the A (t) identically satisfy

A (t) = - Am(t), (AS)nm

whence the system satisfies the Liouville theorem

It follows that the equipartition prohability density

9)0-exp(L-(const)* 2J (A)

is an absolute equilibrium distribution. tAW) is to be understood in the

following sense. All n and M for n or m greater than N (N as large as desired)

Aare dropped from (A3) and (A4), yielding a finite system. If Gn (t;t') is

nme
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the response matrix of the i's, then it follows 1 4 that

Kn M)Sit'P :Gnm(t;t)> (t 2: t),(8

where the average is over the suitably normalized distribution (A7). Trans-

formition back to x space, followed by the limit N - - then gives

Y(x-.tjt-x',t'jt') = G(x;tlt;x-,,tllt') (t > V'), (A9)

and (5.15) then follows from the fact that there iE no r or r' dependence

when K•= 0.

The inviscid equipartition solition for the £ulerian velocity field

satisfying (3.21) in an arbitrary domain tray be established by a similar

procedure, using an appropriate set of eigenfunctions. (Note that this

solution contrins both shear and compressive velocity compcnents but that

the compressive componc its am static and do not affect the dynamics of the

shear components.] The technique of Ref. 14 ncw establishes (8.15) for

r -.t, r' = t'. The relation may then be established for general r and r'

by appJying the technique of Ref. 14 to (3.18). This readily shows that

for any r, the field u(x, t r), considered as a function of t, is in equi-

partition equilibrium and satisfies a fluctuation-relaxation relation like

that of the Lulerian field.
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FIGURE CAPTIONS

Fig. 1. Evolution of u(x,tlr) in the (tr) plane from the initial time to.

The point (t,r) may be either above or below the ciagonal.

Fig. 2. Propagation route in the (t,r) plane of the Derturbation described

by G(xtlr;x',t'Ir'). The points (t,r) and (t',r') may be indeDendentlv

either above or below the diagonal, but r ? r' always.

Fig. 3. Paths of evolution and propagation associated with the direct-

interaction contributions to S and H. The points (t,r) and (t',r') may be

independent oy either above or below the diago..al. In Fig. 3a, r > r' or

r t r'. in Fig. 3b, r 2 r'.

Fig. 4. (a) Paths of evolution associated with the direct-interaction or

LHDI contribution to Sin and N in. (b) Paths of propagation associated with

the contribution to H. and W.
in in
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